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Abstract 
 

Over the last several years we have predicted and observed plasmas with an index of refraction greater than one in 
the soft X-ray regime. These plasmas are usually a few times ionized and have ranged from low-Z carbon plasmas to 
mid-Z tin plasmas. Our main calculational tool has been the average atom code. We have recently observed C2+ plasmas 
with an index of refraction greater than one at a wavelength of 46.9 nm (26.44 eV). In this paper we compare the 
average atom method, AVATOMKG, against two more detailed methods, OPAL and CAK, for calculating the index of 
refraction for the carbon plasmas and discuss the different approximations used. We present experimental measurements 
of carbon plasmas that display this anomalous dispersion phenomenon. It is shown that the average atom calculation is a 
good approximation when the strongest lines dominate the dispersion. However, when weaker lines make a significant 
contribution, the more detailed calculations such as OPAL and CAK are essential. During the next decade X-ray free 
electron lasers and other X-ray sources will be available to probe a wider variety of plasmas at higher densities and 
shorter wavelengths so understanding the index of refraction in plasmas will be even more essential. With the advent of 
tunable X-ray lasers the frequency dependent interferometer measurements of the index of refraction may enable us to 
determine the absorption coefficients and line-shapes and make detailed comparisons against our atomic physics codes. 
 
Keywords: X-ray laser, Interferometers; Index of refraction; Plasmas; Anomalous dispersion 
 
 
1. Introduction 

 

 For many decades optical interferometers have been used to measure the index of refraction of 

plasmas [1]. Using the assumption that the index of refraction of the plasma is due only to the free 

electrons [1-2], an interferometer can measure the transverse electron density of the plasma since, 

for a plasma that is spatially uniform in the longitudinal direction, the electron density is directly 



 2 

proportional to the number of fringe shifts in the interferometer. This assumption also means that 

the index of refraction in the plasma must be less than one. Over the last decade many 

interferometers [3-8] have been built in the soft X-ray wavelength range of 14 to 72 nm (89 to 17 

eV) to measure the electron density of plasmas assuming the free electron approximation. In the 

future, interferometers will be built using the X-ray free electron lasers, which will extend lasers to 

even shorter wavelengths [9] so understanding the regimes of validity for the free electron 

approximation will be even more vital when these diagnostics are used to measure the electron 

density of plasmas. 

Over the last four years interferometer experiments [10-15] of Al, Sn, Ag, and C plasmas have 

observed fringe lines bend in the opposite direction than was expected, indicating that the index of 

refraction was greater than one in parts of the plasma. Analysis of these experiments showed that the 

anomalous dispersion from the resonance lines and absorption edges of the bound electrons have a 

larger contribution to the index of refraction with the opposite sign as the free electrons [10-14,16-

18] and their influence on the index of refraction extends far from the absorption edges and 

resonance lines.  In all these experiments the familiar dispersion [19] from solid-state physics, 

which is responsible for glass having an index of refraction between 1.5 and 2.0 and gives us visible 

optics, appears as an important effect in the plasma regime, where it has traditionally been ignored. 

In the course of understanding the anomalous dispersion phenomenon in the plasma regime we 

have developed a new average atom code [20], given the name AVATOMKG, that enables us to 

calculate the index of refraction for any plasma at any wavelength. This code is a modified version 

of the INFERNO average atom code [21] that has been used for many years to calculate the 

absorption coefficients for plasma at a given temperature and density.  

In this paper we compare calculations of the index of refraction for carbon plasmas done with 

the AVATOMKG code against calculations done with the more detailed OPAL and CAK codes. 

The different approximations used in the three codes are discussed. It is important to understand the 

limitations of the various methods and the need for good experimental data to improve the 

predictive capability of the calculations. We also present experimental measurements of C2+ plasmas 

that have observed the index of refraction greater than one at the 46.9 nm (26.44 eV) wavelength of 

the Ne-like Ar X-ray laser [22] that is used at Colorado State University. This X-ray laser is a 

capillary discharge, table-top X-ray laser that has been used for more than a decade as a research 

tool. The ability to calculate and measure this phenomenon of anomalous dispersion is only in its 
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infancy and much research needs to be done to improve the capability for accurate quantitative 

predictions and measurements. 
 
 
2. Analysis of interferometer experiments 

 

 The traditional formula for the index of refraction of a plasma is n = (1 – Nelec / Ncrit)1/2 where 

Nelec is the electron density of the plasma and Ncrit is the plasma critical density.  This assumes that 

only free electrons contribute to the index of refraction. At wavelength λ, Ncrit = π / (r0 λ2) where r0 

is the classical electron radius, 2.81794 x 10-13 cm [2]. In typical experiments the electron density is 

much smaller than the critical density so the formula above can be approximated by n = 1 – (Nelec / 

2Ncrit). In an interferometer the number of fringe shifts, Nfs, is given by the difference in path length 

of the two interfering beams as they go through the interferometer, relative to the wavelength of the 

probe beam: 

When probing a plasma that is uniform over its length L the expression for the number of fringe 

shifts observed in an interferometer becomes Nfs = (1 – n) L / λ. The number of fringe shifts is 

measured with respect to a set of reference fringes in the absence of any plasma and, using the 

approximations described above for a uniform plasma, this simplifies to 

 

When analyzing an experiment one measures how far the fringes have shifted compared with the 

reference fringes and converts this into electron density using Eq. (2). For the 46.9 nm Ne-like Ar 

soft x-ray laser, with a critical density of 5.08 x 1023 cm-3, the number of fringe shifts in the 

interferogram is given by Nfs = (Nelec L) / (4.8 x 1018 cm-2). Under these assumptions, the fringes 

will always bend in one direction when a plasma is probed, but from the anomalous results observed 

in many interferometer experiments [10-15] over the last four years it is clear that the traditional 
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technique used to analyze the interferometer experiments is incomplete and that the bound electrons 

can have a significant contribution to the index of refraction for many partially ionized plasmas.  

 An approach to understand the contribution of the bound electrons to the index of refraction is 

to look at the relationship between the absorption coefficient and the index of refraction. The total 

absorption coefficient α = Nion σ = (4 π β) / λ where Nion is the ion density of the plasma, λ is the 

wavelength, σ is the absorption cross-section, β is the imaginary part of the complex index of 

refraction n* defined by n* = 1 – δ – iβ. The real part of the index of refraction n = 1 – δ. The 

Henke tables [23] available from Lawrence Berkeley Laboratory (LBL) tabulates the dimensionless 

optical constants f2 and f1 for neutral materials. These coefficients are related to δ and β by δ = f1 

Nion / (2 Ncrit) and β = f2  Nion / (2  Ncrit). From the total absorption cross-section σ we determine the 

optical constant f2 = σ / (2 λ r0). We then derive the optical constant f1 as a function of photon 

energy E using the Kramers-Kronig dispersion relation [24]. This involves taking the principal value 

of the integral 

 

where Znuc is the atomic number of the element. This means we include the total number of bound 

and free electrons when calculating the dispersion relation. For example, Znuc = 6 for a C plasma and 

50 for a Sn plasma. For neutral materials the oscillator strength sum rules insure that f1 goes to zero 

at zero energy and Znuc at infinite energy. For an ionized plasma with average ionization Z* then f1 

= Z* at E = 0.  Z* is the average number of free electrons per ion. 

In the absence of any bound electrons f1 is equivalent to the number of free electrons per ion. 

Taking the ratio of f1 to Z* gives the ratio of the electron density measured using the free electron 

approximation to the actual electron density in the plasma. When this ratio is negative, the index of 

refraction is greater than one and the fringes in the interferogram bend in the opposite direction than 

expected. 

To illustrate this phenomena, Fig. 1a shows an interferogram of a 0.1-cm long C plasma taken 3 
ns after the creation of the plasma by illuminating a 500 µm semi-cyclindrical C target with 0.6 J of 

energy from a 120-ps duration Ti:Sapphire laser. The solid lines indicate the position of the 
reference fringes in the absence of any plasma. In the interferogram one observes the highest density 
plasma in the center of the cylinder with the fringes moving to the right, as expected. However, near 
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the surface of the target one observes fringes that move to the left of the reference fringes, indicating 
the index of refraction is great than one in this region. Fig. 1b shows a map of the calculated number 

of fringe shifts from the interferogram in Fig. 1a. In the region near the center of the cylinder one 
finds up to 1.5 positive fringe shifts, but surrounding this region, and especially near the target 
walls, negative fringe shifts are observed of up to -1. Closer to the target surface the absorption of 

the probe beam prevents measurements of the number of fringe shifts. This is consistent with the 
central high-density region being sufficient hot and ionized (three or more times ionized) such that 
the free electron approximation for the index of refraction is valid. However, in the cooler region 

near the target surface where the C is less ionized (doubly-ionized or less), this approximation 
breaks down. If we wait for the C plasma to expand and cool even more and observe the plasma 15 
ns after the time of plasma creation we observed most of the fringes moving to the left. The 

interferometer and experimental configuration are described in more detail in Refs. 14 and 15. In the 
next two sections we will describe the methods used to calculate the index of refraction for the C 
plasmas and the results from those calculations.  

 
3. Calculational methods 

 
 In this paper we compare three different methods to calculate the index of refraction for carbon 

plasmas near C2+. The first method, called AVATOMKG for average-atom Kubo-Greenwood, is 

very general and enables one to calculate the index of refraction for any plasma at any wavelength 

by using a modified version of the INFERNO average atom code. The INFERNO code [21] has 

been used for many years to calculate the ionization conditions and absorption spectrum of plasmas 

under a wide variety of conditions. For given temperatures and densities, the INFERNO code 

calculates a statistical population for occupation of one-electron Dirac orbitals in the plasma. In this 

work, the AVATOMKG method uses a non-relativistic version of INFERNO to calculate bound and 

continuum orbitals and the corresponding self-consistent potential. By applying linear response 

theory we obtain an average-atom version of the Kubo-Greenwood equation [25,26] for the 

frequency-dependent conductivity of the plasma. The imaginary part of the complex dielectric 

function is proportional to the conductivity. The real part of the dielectric function can be found 

from its imaginary part using a Kramers-Kronig [24] dispersion relation. The details of the Kubo-

Greenwood formula applied to the average-atom model are described in Ref . 20.  
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The average atom version of the Kubo-Greenwood formula described in Ref. 20 diverges at low 

frequencies, where the single-atom approximation, which presumes that scattering of a conducting 

electron on each atom takes place independently of all other atoms, fails. The relaxation time τ 

distinguishes a relatively high-frequency region ωτ > 1, where the one-atom approximation is 

applicable explicitly, from extreme low frequencies ωτ < 1, where the one-atom approximation 

breaks down.  In this work, we use a modified version of the formalism, which takes into account 

the many-atomic collisions and is found to be accurate in all frequency regions, from ω=0 to ωτ 

>>1. The present version of the AVATOMKG code reproduces the Ziman formula in the static 

limit, reproduces the results based on the previous version of the Kubo-Greenwood formula for high 

frequencies, and satisfies the conductivity sum-rule.  

When we originally developed the AVATOMKG code we validated the results for partially 
ionized Al plasmas against calculations done with the OPAL code [27-29], which is the second 
method used in this paper. The OPAL code was developed at the Lawrence Livermore National 
Laboratory to compute opacities of low- to mid-Z elements. The calculations are based on a 
physical picture approach that carries out a many-body expansion of the grand canonical partition 
function. The method includes electron degeneracy and the leading quantum diffraction term as well 
as systematic corrections necessary for strongly-coupled plasma regimes. The atomic data are 
obtained from a parametric potential method that is fast enough for in-line calculations while 
achieving accuracy comparable to single configuration Hartree-Fock results. The calculations use 
detailed term accounting; for example, the bound-bound transitions are treated in full intermediate 
or pure LS coupling depending on the element. Degeneracy and plasma collective effects are 
included in inverse Bremsstrahlung and Thomson scattering. Most line broadening is treated with a 
Voigt profile that accounts for Doppler, natural width, and electron impacts. Linear Stark 
broadening by the ions is included for one-, two-, and three-electron systems. By contrast to the 
average-atom approach, where ions are assumed to be fractionally occupied, in the OPAL code the 
plasma is treated as a mixture of atoms in discrete ionization states, thereby giving a more realistic 
description of individual lines and absorption edges. However the OPAL calculations can only be 
done for a limited range of ions. The OPAL calculations do include full spin-orbit coupling. 

Our third method is an old method first used by Castor, Abbott, and Klein in 1974 to provide 

C2+ data for calculations of solar winds [30]. We refer to this method as CAK after the first letters of 

the authors’ last names. The set of energy level and oscillator strength data used by CAK was 

calculated using the multi-channel quantum defect theory developed by Seaton and others [31]. The 
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method used for the C2+ data in CAK was to fit the 1-channel or 3-channel scaled R matrices to 

analytic functions of energy such that the poles of the corresponding S-matrices agreed with the 

tabulated energy levels published by NIST [32]. This gives results for all the configuration-

interaction (CI) mixing coefficients. A Bates-Damgaard-like procedure is used to estimate the radial 

integrals for all the transitions, which, with the mixing coefficients, give the line strengths S. Most 

of the transition energies agree with the experimental values, but the unmeasured lines are predicted 

from the R-matrix fits. 

The CAK calculation includes 134 levels with 2snl and 2pnl configurations from n = 2 to 6 for 

C2+. There is no spin-orbit splitting included. The line strength S is the square of the reduced matrix 

element summed over all the transitions in a group, such as the 3P multiplet. The dipole line strength 

is conventionally quoted in atomic units of (a0*e)2 where a0 is the Bohr radius of 5.29 x 10-9 cm. The 

absorption oscillator strength fosc is related to the absorption opacity in a line or in a blended group 

of lines. The relation between the electric dipole line strength S and the absorption oscillator 

strength fosc is given fosc = ΔE S / [3 glower] where ΔE is the transition energy in Rydberg (Ry = 

13.60583 eV) and glower is the statistical weight of the lower energy level for the transition. For an 

LS term, glower is (2S+1)(2L+1), so if we consider an example such as the 2s2p(3P) -> 2s3d(3D) 

transition in C2+ then the lower 3P level has glower = 9 since L = 1 and S = 1 for a 3P state. The CAK 

calculation has dipole line strength S and the transition energy ΔE calculated for each transition. We 

convert fosc into the absorption coefficient f2 used in Eq. (3) by f2 = (π/2) ΔE fosc g(ε) where g(ε) is 

the lineshape such that the integral of g(ε) dε is normalized to unity. For a Lorentzian lineshape g(ε) 

= (2 a / π) /  [ΔE2 + a2] where a is the half-width half-maximum linewidth. In this paper we set a = 

0.088 eV based on the OPAL calculations done with a temperature of 6 eV and an ion density of 

1020 cm-3. We also use a linewidth multiplier of 3.52 in the AVATOMKG calculations to make 

those calculations have the same linewidth as the OPAL calculations. When one uses f2 in the Eq. 

(3) the contribution to f1 at photon energy E due to a single line with absorption oscillator strength 

fosc and transition energy ΔE is  
                    Δf1(E) = (E – ΔE) ΔE2 fosc / [(E + ΔE) ((E – ΔE)2 + a2)].      (4) 
This formula insures that the contribution to f1 at energy E = 0 is - fosc for a single line. In order 

to get the total contribution for Nion C2+ ions to the index of refraction we calculated a Boltzmann 
distribution for the fractional population in each energy level by first creating a SUM = Σi gi exp(-
Ei/θ) for all the energy levels i with statistical weight gi and energy Ei of C2+ where θ = kT is the 
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temperature in energy units. For each transition the contribution to f1 shown above is then modified 
by the fractional population in the lower energy level, gi exp(-Ei/θ) / SUM, times the relative 
population in the transition, 1 – exp(-ΔE/ θ). This last term is a very small effect for the calculations 
done in this paper. We sum over all the transitions in the CAK calculation. To calculate the final 
value of f1 after including all the transitions we add a constant value of 3.04 to f1 to force f1 = 2.0 at 
E = 0. This added constant represents the bound-free transitions for the K and L shell as well as the 
higher energy bound transitions associated with the K shell such as 1s – 2p. Since these transitions 
are all at higher energy their contribution to f1 at lower energies tend to be a constant value. 
 
4. Modeling of carbon plasmas 
 

Several years ago our calculations showed that the index of refraction of partially ionized C 

plasma was very complex for photon energies below 40 eV [18]. To understand what C plasmas 
would display an anomalous index of refraction near 47 nm we first need to look at the absorption 
characteristics of C. For neutral C the ionization potential is at 11.26 eV. This L shell absorption 

edge moves to 24.38 eV for singly ionized C, which would be a very opaque plasma for the 26.44 
eV X-ray laser, since the laser is just above this absorption edge. However the ionization potential 
for doubly ionized C moves to 47.89 eV, which makes the plasma quite transparent for this X-ray 

laser, which is now far below the absorption edge. As we continue to ionize C the ionization 
potential moves to even higher energy. Since absorption is an issue for neutral and singly ionized C 
we used the AVATOMKG average atom code to calculate the index of refraction for C2+, C3+, and 

C4+, by using an ion density of 1020 cm-3 and plasma temperatures of 6, 10, and 30 eV to achieve Z* 
= 1.97, 2.92, and 3.95, respectively. Z* is the average degree of ionization so that Z* = 2 means the 
plasma is doubly ionized, on average. The optical constants that we calculate are dimensionless and 

therefore independent  of the actual density of the plasmas. Since the main feature in the spectrum 
are the 2p – 3d lines in each of these ionization stages we shifted the energy scale of the 
AVATOMKG results to make sure that the photon energy of the main absorption feature agreed 

with the experimentally observed energies. This required a positive shift of 4.21, 1.95, and 13.3 eV 
for C2+, C3+, and C4+, respectively. It is typical to have to make shifts in the energy scale to make 
atomic calculations align with experimental data so it is vital to have at least one experimentally 

measured line to benchmark the calculations against. Figure 2a shows the optical constant f1 versus 
photon energy calculated by the AVATOMKG code for these three ionization stages. One observes 
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that f1 is negative (-5.6) at 26.44 eV for the C2+ (solid line). As the 2p – 3d line shifts to higher 
energy for C3+(dashed line), f1 is 2.2 at 26.44 eV. As one continues to ionize the plasma to C4+ 

(dotted line), f1 approaches 4 over this entire energy range as the contribution from the bound 
electrons disappear.  

Using the OPAL code we did similar calculations of C plasmas with temperatures of 6, 10, and 

30 eV. This gave Z* = 1.93, 2.96, and 3.90, respectively. For the 6 eV temperature case we shifted 
the energy scale of the OPAL calculations by -0.35 eV to make the dominant 2p-3d line in C2+ agree 
with the measurement. For the 10 and 30 eV plasmas we shifted the energy scale by -0.2 eV to make 

the dominant 2p-3d line in C3+ agree with the measurement. Figure 2b plots the optical constant f1 
versus photon energy calculated by the OPAL code for the C plasmas with these three temperatures 
that result in the average ionization stages being near C2+, C3+, and C4+, respectively. Comparing 

Figs. 2a and 2b one can see a lot of similarity in the results. The value of f1 is negative (-0.8) at 
26.44 eV for the C2+ (solid line) and becomes positive (2.4) for C3+(dashed line). As one continues to 
ionize the plasma to C4+ (dotted line), f1 is 3.9 at 26.44 eV and approaches 4 over this entire energy 

range as the contribution from the bound electrons disappear.  
Comparing Figs. 2a and 2b one can see the big difference between the two methods. For the 

average atom method there is one strong 2p – 3d line that moves to higher energy as the plasma 

becomes more ionized while in the OPAL calculation one can see the 2p – 3d line near 27 eV in C2+ 
become weaker and the 2p – 3d line near 32 eV in C3+ become stronger as the plasma becomes more 
ionized. For the OPAL calculation both lines are present in both plasmas but the relative strength 

changes. Figure 3 highlights this difference by plotting the optical constant f1 versus photon energy 
for the 10 eV plasma with Z* near 3 for both the AVATOMKG(solid line) and OPAL(dashed line) 
codes. For the strong 2p – 3d line in C3+ at 32.28 eV the two codes agree well. Even for the weaker 

2p – 3s line at 29.55 eV the two codes agree except for the AVATOMKG code having the line at 29 
eV. However, for the AVATOMKG code the C2+ lines near 25 and 27 eV have disappeared while 
the OPAL calculation still has these lines present but they are much weaker due to the small 

population of C2+ ions at this higher plasma temperature. Clearly C2+ is the important ionization 
stage for looking at the anomalous dispersion in C plasmas for the interferometer experiments done 
with the X-ray laser at 26.44 eV because of the strong 2p – 3d line near 27 eV, so we focus on C2+ in 

the rest of this paper. It is also clear from the OPAL calculation that even though there is a 
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distribution of ionization stages, at a temperature of 6 eV, the C2+ ionization stage dominates in the 
calculation. 

For C2+ we now calculate f1 using the CAK method described in the previous section and 
compare with the AVATOMKG and OPAL calculations. For a C plasma with a temperature of 6 eV 
the AVATOMKG average atom code has Z* = 1.97 and OPAL has 1.93 while the CAK method 

only includes C2+ transitions. Fig. 4 shows f1 versus photon energy for a 6 eV C plasma using the 
three different methods. At 26.44 eV f1 is -5.6 for average atom(solid line), -3.8 for CAK(dashed 
line), and -0.8 for OPAL(dashed line). In all three cases the calculations have negative f1 at 26.44 eV 

which means we would measure an index of refraction larger than one and see the fringe lines bend 
the opposite direction as would usually be expected. However there are large differences in the 
absolute value of f1 so there is still a lot of improvement that can be made. 

To understand some of the other detailed spectral differences between the methods Fig. 5 plots 
the absorption constant f2 versus photon energy for the C plasma with temperature of 6 eV for the 
AVATOMKG (solid line) and CAK (dotted line) calculations. For the AVATOMKG calculation 

one observes two significant lines, the 2p – 3s line at 23.38 eV, and the 2p – 3d line at 26.99 eV. 
Looking at experimental data the dominant 2p-3s line is measured near 23.04 eV, so the 
AVATOMKG calculation has the energy about 0.3 eV too high but the CAK result is in excellent 

agreement. The AVATOMKG 2p-3d line agrees with the measured line at 26.978 eV since we 
shifted the AVATOMKG spectra 4.21 eV to force agreement for this line. 

Now let us look in more detail at the 2p-3d line at 26.98 eV (45.96 nm). In the AVATOMKG 

calculation this is a single line with fosc = 0.35. For the CAK method this single configuration-
averaged line is divided into seven configuration-specific lines, as shown in Table 1. Listed in Table 
1 is the transition in LS coupling, wavelength, energy, fosc, and fractional population in the lower 

level of the transition for a plasma with a temperature of 6 eV. All these lines can be seen clearly in 
Fig. 5 except for the 23.162 eV line which is hidden on the high energy shoulder of the stronger 2p-
3s line at 23.036 eV. Even though most of the lines have a large fosc the line at 26.978 eV dominates 

because it has a much larger fractional population in the lower level of the transition. In the 
AVATOMKG calculation all the population is in the lower level because there is only one lower 
level. Therefore the AVATOMKG calculation gives very good agreement with the CAK method 

when calculating f1 because the single line in the AVATOMKG calculation dominates the results. 
To determine the effective oscillator strength in the CAK calculation one takes the product of fosc 
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and the fractional population in the lower level listed in Table 1. If one was looking at the effect 
from any of the other six weaker lines the AVATOMKG code would be missing those lines and we 

would need another general method like OPAL or specific detailed method like CAK.  
The OPAL method includes all the lines including the spin-orbit coupling. To highlight this 

difference lets look at the 2s2p(3P)-2s3d(3D) line at 26.978 eV from the CAK calculation. This 

single line can be further broken down into five separate lines [32] when the total angular 
momentum J for the spin-orbit coupling is included, as shown in Table 2. For the CAK calculation 
the gi = 9 for the lower 3P having L=1 and S=1. This is broken into 3 energy levels with J = 0, 1, and 

2 which have a total degeneracy of 9. One notices that these separate lines are not visible in the 
calculation because they are all within 0.01 eV of each other while our calculations have a full-
width half maximum (FWHM) linewidth of 0.176 eV, which is much larger. If one sums the fosc to 

different upper states and averages over the lower states weighted by their statistical weight one can 
determine an average fosc = 0.558 for these lines which is about 94% of the value calculated by the 
CAK method. The big difference with the OPAL method is that there is a distribution of ionization 

stages and therefore we have lines from different ionization stages present. 
 
 

 
5. Conclusions 

 

 For decades, diagnostics of multiply ionized plasmas such as interferometry and refractometry 

have relied on the approximation that the index of refraction in plasmas is due solely to the free 

electrons. This approximation makes the index of refraction less than one and is an essential 

assumption for using interferometers to directly measure electron densities in plasmas. This 

assumption is also used in determining the critical density surface for energy deposition in a plasma 

and for doing photon transport calculations. Recent X-ray laser interferometer measurements of Al, 

Sn, Ag, and C plasmas observed anomalous results with the index of refraction being greater than 

one. The analysis of the plasmas showed that the anomalous dispersion from both the resonance 

lines and absorption edges due to the bound electrons can be the dominant contribution to the index 

of refraction over the photon range from the optical up to 100 eV (12 nm) soft X-rays.  

In this paper we have used three different methods to calculate the index of refraction for 

doubly ionized C plasmas and have discussed the approximations used and the importance of 
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experimental atomic data to benchmark the codes against. We show that the average atom 

(AVATOMKG) approach works well when the effects of the strongest lines dominate the dispersion 

but that the more detailed calculations such as OPAL and CAK are essential to evaluate the effect of 

weaker lines in the plasma. We also present experimental data that observes the index of refraction 

greater than one in a carbon plasma at the 46.9 nm (26.44 eV) wavelength of the Ne-like Ar X-ray 

laser.  

X-ray laser interferometers are a valuable tool to measure the index of refraction and electron 

density of plasmas. During the next decade X-ray free electron lasers and other sources will be 

available to probe a wider variety of plasmas at higher densities and shorter wavelengths so it will 

be even more essential to understand the index of refraction in plasmas. With the advent of tunable 

X-ray lasers, the frequency dependent interferometry measurements of the index of refraction may 

enable us to determine the absorption coefficients and lineshapes and make detailed comparisons 

against our atomic physics codes. 
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Figure and table captions: 
 
Fig. 1. (a) (top) Interferogram of carbon plasma generated by irradiating a semi-cylindrical cavity 
and taken at 3 nsec after laser irradiation. Fringes in the middle of the plasma are bending to the 
right however fringes near the target surface are bending to the left of the reference fringes (solid 
lines) indicating an index of refraction larger than one even at this early time. The target surface is 
shown by the white line on the left side of the figure. (b) (bottom) Fringe shift map corresponding to 
the interferogram of (a). 
 
Fig. 2. (a) Optical constant f1 versus photon energy calculated with the average atom code 
(AVATOMKG) for three different ionization stages of carbon plasmas. (b) Optical constant f1 
versus photon energy calculated with the OPAL code for three different ionization stages of carbon 
plasmas.  
 
Fig. 3. Optical constant f1 versus photon energy calculated with the average atom (AVATOMKG) 
and OPAL codes for carbon plasmas at a temperature of 10 eV, whose degree of ionization is near 
C3+.  
 
Fig. 4. Optical constant f1 versus photon energy calculated with the AVATOMKG, OPAL, and 
CAK codes for carbon plasmas at a temperature of 6 eV, whose degree of ionization is near C2+.  
 
Fig. 5. Absorption constant f2 versus photon energy calculated with the AVATOMKG and CAK 
codes for carbon plasmas at a temperature of 6 eV, whose degree of ionization is near C2+.  
 
Table 1. The seven 2p-3d lines in the CAK calculation showing wavelength, photon energy, fosc, and 
the fractional population in the lower state of the transition at a plasma temperature of 6 eV. 
 
Table 2. The five fine structure lines from the single 2s2p(3P)-2s3d(3D) transition.
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Fig. 1. (a) (top) Interferogram of carbon plasma generated by irradiating a semi-cylindrical cavity 
and taken at 3 nsec after laser irradiation. Fringes in the middle of the plasma are bending to the 
right however fringes near the target surface are bending to the left of the reference fringes (solid 
lines) indicating an index of refraction larger than one even at this early time. The target surface is 
shown by the white line on the left side of the figure. (b) (bottom) Fringe shift map corresponding to 
the interferogram of (a). 
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Fig. 2. (a) Optical constant f1 versus photon energy calculated with the average atom code 
(AVATOMKG) for three different ionization stages of carbon plasmas. (b) Optical constant f1 
versus photon energy calculated with the OPAL code for three different ionization stages of carbon 
plasmas. 
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Fig. 3. Optical constant f1 versus photon energy calculated with the average atom (AVATOMKG) 
and OPAL codes for carbon plasmas at a temperature of 10 eV, whose degree of ionization is near 
C3+. 
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Fig. 4. Optical constant f1 versus photon energy calculated with the AVATOMKG, OPAL, and 
CAK codes for carbon plasmas at a temperature of 6 eV, whose degree of ionization is near C2+. 
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Fig. 5. Absorption constant f2 versus photon energy calculated with the AVATOMKG and CAK 
codes for carbon plasmas at a temperature of 6 eV, whose degree of ionization is near C2+. 
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Table 1. The seven 2p-3d lines in the CAK calculation showing wavelength, photon energy, fosc, and 
the fractional population in the lower state of the transition at a plasma temperature of 6 eV. 

Transition Wavelength(nm) Energy(eV) fosc Fraction 
2p2p(1S)-2p3d(1P) 60.904 20.358 0.489 0.0038 
2s2p(1P)-2s3d(1D) 57.428 21.590 0.633 0.0593 
2p2p(1D)-2p3d(1D) 53.529 23.162 0.183 0.0402 
2p2p(1D)-2p3d(1F) 51.152 24.239 0.304 0.0402 
2p2p(3P)-2p3d(3D) 49.951 24.822 0.566 0.0861 
2p2p(3P)-2p3d(3P) 49.349 25.124 0.139 0.0861 
2s2p(3P)-2s3d(3D) 45.957 26.978 0.591 0.4992 
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Table 2. The five fine structure lines from the single 2s2p(3P)-2s3d(3D) transition. 

Transition Wavelength(nm) Energy(eV) fosc 
2s2p(3P0)-2s3d(3D1) 45.9466 26.9847 0.564 
2s2p(3P1)-2s3d(3D2) 45.9514 26.9819 0.422 
2s2p(3P1)-2s3d(3D1) 45.9516 26.9817 0.141 
2s2p(3P2)-2s3d(3D3) 45.9627 26.9752 0.470 
2s2p(3P2)-2s3d(3D2) 45.9633 26.9749 0.084 
 
 
 
 
 


